| l SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal 3(1): 36-45 (2012)

Software Architecture and its VVarious Tools

Varinder Pabbi

Asst. Prof.

Ramgarhia Institute of Engineering & Technology,
Phagwara,India

Abstract

The software architecture of a system is the set of structures needed to reason about the system,
which comprise software elements, relations among them, and properties of both. The term also
refers to documentation of a system's "software architecture.” Documenting software architecture
facilitates communication between stakeholders, documents early decisions about high-level
design, and allows reuse of design components and patterns between projects. The software
architecture discipline is centered on the idea of reducing complexity through abstraction and
separation of concerns. To date there is still no agreement on the precise definition of the term
“software architecture”. However, this does not mean that individuals do not have their own
definition of what software architecture is. This leads to problems because many people are
using the same terms to describe differing ideas.

Keywords;- The goal of architecture, various tools to evaluate the software architecture;
ATAM, SAAM,PASA.

Introduction

The software architecture of a program or computing system is a depiction of the system that
aids in the understanding of how the system will behave. Software architecture serves as the
blueprint for both the system and the project developing it, defining the work assignments that
must be carried out by design and implementation teams. The architecture is the primary carrier
of system qualities such as performance, modifiability, and security, none of which can be
achieved without a unifying architectural vision. Architecture is an artifact for early analysis to
make sure that a design approach will yield an acceptable system. Software application
architecture is the process of defining a structured solution that meets all of the technical and
operational requirements, while optimizing common quality attributes such as performance,
security, and manageability. It involves a series of decisions based on a wide range of factors,
and each of these decisions can have considerable impact on the quality, performance,
maintainability, and overall success of the application. Software architecture encompasses the set
of significant decisions about the organization of a software system including the selection of the
structural elements and their interfaces by which the system is composed behavior as specified in
collaboration among those elements composition of these structural and behavioral elements into
larger subsystems and an architectural style that guides this organization. Software architecture
also involves functionality, usability, resilience, performance, reuse, comprehensibility,
economic and technology constraints, tradeoffs and aesthetic concerns.

~ 36 ~

| l SETT E “International Journal for Science and Emerging Technologies with Latest Trends”
3(1): 36-45 (2012)

International Journal

\)
Why is Architecture Important?

Like any other complex structure, software must be built on a solid foundation. Failing to
consider key scenarios, failing to design for common problems, or failing to appreciate the long
term consequences of key decisions can put your application at risk. Modern tools and platforms
help to simplify the task of building applications, but they do not replace the need to design your
application carefully, based on your specific scenarios and requirements. The risks exposed by
poor architecture include software that is unstable, is unable to support existing or future
business requirements, or is difficult to deploy or manage in a production environment.

Systems should be designed with consideration for the user, the system, and the business goals.
For each of these areas, we should outline key scenarios and identify important quality attributes
(for example, reliability or scalability) and key areas of satisfaction and dissatisfaction. Where
possible, develop and consider metrlcs that measure success |n each of these areas.

.

| User ! Business

"~._ /

N 4
|I‘—”' System g

N

Architecture focuses on how the major elements and components within an application are used
by, or interact with, other major elements and components within the application. The selection
of data structures and algorithms or the implementation details of individual components are
design concerns. Architecture and design concerns very often overlap. Rather than use hard and
fast rules to distinguish between architecture and design, it makes sense to combine these two
areas. In some cases, decisions are clearly more architectural in nature. In other cases, the
decisions are more about design, and how they help us to realize that architecture.

By following the processes described in this guide, and using the information it contains, we will
be able to construct architectural solutions that address all of the relevant concerns, can be
deployed on our chosen infrastructure, and provide results that meet the original aims and
objectives.

Consider the following high level concerns when thinking about software architecture:

How will the users be using the application?

How will the application be deployed into production and managed?

What are the quality attribute requirements for the application, such as security,
performance, concurrency, internationalization, and configuration?

How can the application be designed to be flexible and maintainable over time?

What are the architectural trends that might impact your application now or after it has
been deployed?

VV VVYYVY

~ 37 ~

| l SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal 3(1): 36-45 (2012)

The Goals of Architecture

Application architecture seeks to build a bridge between business requirements and technical
requirements by understanding use cases, and then finding ways to implement those use cases in
the software. The goal of architecture is to identify the requirements that affect the structure of
the application. Good architecture reduces the business risks associated with building a technical
solution. A good design is sufficiently flexible to be able to handle the natural drift that will
occur over time in hardware and software technology, as well as in user scenarios and
requirements. An architect must consider the overall effect of design decisions, the inherent
tradeoffs between quality attributes (such as performance and security), and the tradeoffs
required to address user, system, and business requirements.
Keep in mind that the architecture should:

> Expose the structure of the system but hide the implementation details.

> Realize all of the use cases and scenarios.

» Try to address the requirements of various stakeholders.

» Handle both functional and quality requirements.

What Software Architecture Is Not

Software architecture must be distinguished from lower-level design (e.g., design of component
internals and algorithms) and implementation, on the one hand, and other kinds of related
architectures, on the other. For instance, software architecture is not the information model,
though it uses the information model to get type information for method signatures on interfaces,
for example. It is also not the architecture of the physical system, including processors, networks,
and the like, on which the software will run. However, it uses this information in evaluating the
impact of architectural choices on system qualities such as performance and reliability. More
obviously, perhaps, it is also not the hardware architecture of a product to be manufactured.
While each of these other architectures typically have their own specialists leading their design,
these architectures impact and are impacted by the software architecture, and where possible,
should not be designed in isolation from one another. This is the domain of system architecting.

Why Is Evaluation Necessary

Evaluation is the last chance where hidden requirements are discussed and complemented into
the design. In short of communication perfectly and understanding of software project, a great
many stakeholders do not know what they want exactly. In the requirement gathering phase, they
may list several demands, the most crucial ones they believe in. But after evaluation, their
opinions may entirely change, during which they start to be aware of some points they originally
specified are not so important, while some other concerns begin to draw their attention. They are
often surprised by the social power and get excited when they feel the positive improvement
taken by their participating. And architects, during this activity, accept stakeholders various
ideas, some of which are not mentioned in the requirement specification, and take off by
adjusting the initial architecture design. This is also the good opportunity for him or her to
deepen the insight of the to-be-built system. Shortly, architecture evaluation clears the barriers

~ 38 ~

| l SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal 3(1): 36-45 (2012)

among stakeholders, and empowers them with open communication channels. The direct result is
the achievement of a commonly satisfactory system blueprint, which means a more than half
success of a project.

Architecture is the center of development process, deciding the team structure, work division,
configuration repository, documentation organizations, and management strategies and, of
course, the development scheduling, An unsuitable architecture will draw a mass of mess when it
must be modified to fit for the new concerns or those defects not uncovered in the early phase.
The consequence of excessive cost spent on this alternation was accessed above. What's more,
the whole team will face the terrible status that the project is out of control: More bugs are
introduced after original bugs are fixed; demoded work breaks team structure which further
disturbs lucid development; old plans and budgets are thrown away but the new ones cannot be
created in time; all the guys, including customers, managers and programmers, expect vexed for
the end of this nightmare, but no one gets the exactly the idea of the due date. Software
architecture is destined to be evaluated, if it wants to be applied in practice. In fact, numerous
architecture models are created specifically as the input of evaluation processes. Maybe experts
who are concentrating on well-formed representation of architecture do not care about this very
much. All in all, we need architecture evaluation.

Various Tools for Software Architecture

1)Architecture Tradeoff Analysis Method

The Architecture Tradeoff Analysis Method (ATAM) is a method for evaluating software
architectures relative to quality attribute goals. ATAM evaluations expose architectural risks that
potentially inhibit the achievement of an organization's business goals. The ATAM gets its name
because it not only reveals how well an architecture satisfies particular quality goals, but it also
provides insight into how those quality goals interact with each other, how they trade off against
each other. The ATAM is the leading method in the area of software architecture evaluation. An
evaluation using the ATAM typically takes three to four days and gathers together a trained
evaluation team, architects, and representatives of the architecture's various stakeholders

Challenges
Most complex software systems are required to be modifiable and have good performance. They
may also need to be secure, interoperable, portable, and reliable. But for any particular system

» What precisely do these qualities attributes such as modifiability, security, performance,
and reliability mean?
Can a system be analyzed to determine these desired qualities?
How soon can such an analysis occur?
How do you know if software architecture for a system is suitable without having to build
the system first?

YV V

~ 39 ~

|] SETT “International Journal for Science and Emerging Technologies with Latest Trends

4

International Joual | 3(1): 36-45 (2012)

=

f-» —
},.p

Tradeoffs

Impacts Sensitivity
Points

Non-Risks

Distilled into
Risk Themes [

The ATAM consists of nine steps:

1.

Present the ATAM. The evaluation leader describes the evaluation method to the
assembled participants, tries to set their expectations, and answers questions they
may have.

Present business drivers. A project spokesperson (ideally the project manager or
system customer) describes what business goals are motivating the development
effort and hence what will be the primary architectural drivers

Present architecture. The architect will describe the architecture, focusing on
how it addresses the business drivers.

Identify architectural approaches. Architectural approaches are identified by the
architect, but are not analyzed.

Generate quality attribute utility tree. The quality factors that comprise system
"utility” (performance, availability, security, modifiability, usability, etc.) are
elicited, specified down to the level of scenarios, annotated with stimuli and
responses, and prioritized.

Analyze architectural approaches. Based on the high-priority factors identified
in Step 5, the architectural approaches that address those factors are elicited and
analyzed during these step architectural risks, sensitivity points, and tradeoff
points are identified.

Brainstorm and prioritize scenarios. A larger set of scenarios is elicited from
the entire group of stakeholders. This set of scenarios is prioritized via a voting
process involving the entire stakeholder group.

Analyze architectural approaches. This step reiterates the activities of Step 6,
but using the highly ranked scenarios from Step 7. Those scenarios are considered
to be test cases to confirm the analysis performed thus far. This analysis may
uncover additional architectural approaches, risks, sensitivity points, and tradeoff
points, which are then documented.

~ 40 ~

|] SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal ‘ 3(1): 36-45 (2012)

9. Present results. Based on the information collected in the ATAM (approaches,
scenarios, attribute-specific questions, the utility tree, risks, non-risks, sensitivity
points, tradeoffs), the ATAM team presents the findings to the assembled
stakeholders.

Benefits

» clarified quality attribute requirements
» improved architecture documentation
» documented basis for architectural decisions
> identified risks early in the life cycle
» increased communication among stakeholders
Step: Step I Step 2. Step3:
Planning/Information =" Seenario Brainstorming [~] Architecture Presentation[™™] Scenano Coverage
Exchange : (Checking
3
| r
Tt
e Step4:
2 “ : .
: G A l AM ['. Villlldl 1on \(cﬂ.\lln(;muping and
| - Prioritization
| 6
(Bl
IR
| -
19
: =
Sepd: Step 7: Step 6: Step 3.
Consolidate findings and @ {entify Trade-off Points [Perform quality atiibute [Map High€Priority
develop action plan specific analysis Scenarios on Architecturd

1)General Process of ATAM

The complete process of ATAM currently contains four phases and nine main steps.
Here, steps still do not mean that each of them has to be executed in a linear manner. In
practice, evaluation leaders should make decisions to carry out which steps before to
complement something, or jump to a step that should have been performed in several
steps later. It depends on the situation. Steps indicate only the order of generation of
intermediate evaluation products. Steps defined in the later always need products got in
the former as inputs. Therefore, if evaluation team has own information that should be
generated in a certain step or those information is useless for evaluation, that step can be
omitted.

~ 41 ~

|] SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal ‘ 3(1): 36-45 (2012)

ihaas Phase [~ Il
Phase 0 Phase Il
Preparation Kernel Evaluation

: Ending Process
\lcpl Step 9

General process of ATAM

1) Software Architecture Analysis Method

Software architecture analysis method (SAAM) is a method used in software
architecture to evaluate system architecture. It was the first documented software
architecture analysis method, and was developed in the mid 1990s to analyze a system
for modifiability, but it is useful for testing any non-functional aspect. SAAM was a
precursor to the architecture tradeoff analysis method. SAAM is an intuitive method
trying to measure the software's quality through scenarios, rather than the general and
inaccurate quality attributes description. SAAM is simple, caring about only the
relationship between scenarios and architecture structures, by taking not too many
steps and specific techniques. Therefore, it is the ideal start point that beginners of
architecture evaluation take. Initially, SAAM is designed to deal with modifiability of
architecture. But after evolution and practice for several years, SAAM has shown its
power in many other common quality attributes, and becomes the basis of some other
evaluation methods, such as ATAM. It can detect the possible risks of evaluated
architecture and take comparison among several architecture candidates with respect
to meet predefined scenarios.

~ 42 ~

|] SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal ‘ 3(1): 36-45 (2012)

| Develop Scenarios [«————»{ 2.Deseribe Architecture(s)

\ [

I\ /|

/|

\“ ‘ 'w “

| |3 Classify/Priontize Seenarios

e~

| |

\ |
4 Individually Evaluate
[ndircet Seenarios
|

!

0.Create Overall Evaluation

§ Assess Soenario Interaction |

Activities and dependencies in a SAAM analysis

The main output normally is given in the style of evaluation report, by which SAAM
shows the defects that current design cannot reach the quality requirement, in the single
architecture evaluation case; or indicates which candidate meets the scenarios best, in the
multiple cases. It also has the capability of figuring out the potential unsuitable design
due to ugly decomposition or excessive complication. At last, SAAM provides the
estimation of cost and range incurred by modification, avoiding the blind construction.

2) Performance Assessment of Software Architecture

"Software's performance cannot be retrofitted. It must be designed into software from the
beginning, the make it run, make it run right, make it run fast' are dangerous."” This is the
basic motivation of PASA, a method coming from Williams and Smith's work. PASA is
performed through 9 steps.

1) Process Overview: This is a presentation that introduces the general steps
of PASA, motivation of assessment, and the whole process' outcome. It
helps improve participants’ familiarity with what they should do, which
actions are suitable and benefit to the assessment, and thus avoid doing
something nonsensical.

2) Architecture Overview: As the basis for the subsequent activities,
architects have to describe current architecture designs and explain those
critical structure or behavior specifications that the assessment needs.

3) ldentification of Critical Use Cases: Try to find the external visible use
cases that reflect the important system behaviors, especially those tightly
relevant to responsibility and scalability.

~ 43 ~

IJSETT |

International Journal

4)

5)

6)

7)

8)

9)

“International Journal for Science and Emerging Technologies with Latest Trends”
3(1): 36-45 (2012)

Selection of Key Performance Scenarios: From the critical use cases
generated in the previous step, the important performance-related scenarios
are identified.

Identification of Performance Objectives: Each scenario involved in
assessment should be measurable; therefore, assessment participants have
to define the performance objectives against each key performance
scenario.

Architecture Clarification and Discussion: It is the time to inspect the
architecture elements in more deep detail that influence the realization of
the scenarios above. This is achieved by participants' further discussion
about system's architecture, through which the potential problem areas will
be exposed.

Architecture Analysis: Against each key performance scenario, analysis of
architecture is conducted to figure out that whether current design can
support the corresponding performance objectives.

Identification of Alternatives: If some problems exist (in fact, in most
cases it is), ori/~nal architecture should be fine-tuned in local area by
alternating structures which are capacity to meet the objectives. Sometimes,
the whole architecture style is replaced to repair its performance problems.
Presentation of Results: This is the final presentation of assessment’s
conclusion, including the found problems, plan of architecture
modification, estimated work and cost on modification.

Lok i SeoctionofKey | | [deatcationl
feniteclufe (eahtication of
Process Oveigwp=p{ VL Ly et T

Bardmans
Feronmance
Overview (".‘l‘ i Chus

Soenanos (brectives ‘

o

) f I ‘ Archilecture
l'u"’.|"' | .‘1,.,‘}‘] i1ion of \\,“ \artue

s Bk o 1=t (lanfication nd

“1\“)\\1%

PASA evaluation process

~ 44 ~

| l SETT “International Journal for Science and Emerging Technologies with Latest Trends”
International Journal 3(1): 36-45 (2012)

Summary

SAAM and ATAM expose the impression of common features of most scenario based
evaluation methods. They get the input of scenarios and architecture description, evaluate
and judge whether current architecture (or several architecture candidates) is capable of
meeting desired quality requirements. Potential defects and risks are identified, which
then become the motivation of modification. Finally, raw evaluation results are collected
and prepared for the following use, such as hints of future development or historical data
accumulated for reuse. Reality is flexible, thus it needs flexible solution. Just remember
the principles why evaluation is so useful.

References
1. Software Architecture By Zheng Qin Jiankuan Xing Xiang Zheng.

2. Software Architecture Analysis Tool By Johan Muskens.

~ 45 ~

